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Recently an interesting new class of PDE integrators, multisymplectic schemes,
has been introduced for solving systems possessing a certain multisymplectic struc-
ture. Some of the characteristic features of the method are its local nature (independent
of boundary conditions) and an equal treatment of spatial and temporal variables.
The nonlinear Scludinger equation (NLS) has a multisymplectic formulation, and
in this paper we discuss the performance of both symplectic and multisymplectic
integrators for the NLS. In the numerical experiments, the multisymplectic concate-
nated midpoint scheme (a centered cell discretization) is shown to preserve the local
conservation laws extremely well over long times and to preserve global invariants
such as the norm and momentum within roundoff. On the other hand, an integrable
Hamiltonian semi-discretization of NLS from Ablowitz and Ladik (AL) possesses
a full set of global conservation laws and a noncanonical symplectic structure. We
generalize the generating function technique to develop symplectic integrators of
arbitrary order for a general class of noncanonical systems carrying a symplectic
structure of the AL type. Another approach examined in the paper is the introduc-
tion of transformations to reduce the AL system to either (1) separable form or (2)
canonical form and then apply standard schemes in the new coordinates. All of the
discretizations are tested numerically using initial data for spatially periodic mul-
tiphase solutions. The performance of the schemes as well as interrelations among
various geometric features are discusse@. 2001 Academic Press

Key Words: symplectic integrators; multisymplectic integrators; nonlinear
Schiodinger equation; nonlinear wave equations.

1. INTRODUCTION

Numerical schemes which preserve the geometric features of the system under s
have become very popular. In particular, symplectic schemes which are designed to pres
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the symplectic structure of canonical Hamiltonian ODEs have demonstrated a remark:
ability to preserve the phase space geometry for very long times. In the low-dimensic
case, symplectic discretizations conserve the integrals of motion of the original syst
extremely well. However, systems with a noncanonical symplectic structure have remai
largely unexamined, with a few exceptions such as the lihéarPoissoncase and the
Ablowitz—Ladik discrete nonlinear Schrodinger equation [22]. The reason for this is par
the fact that any nondegenerate symplectic structure can be reduced to the canonica
via a suitable local coordinate transformation (Darboux’s Theorem) [5]. The numeri
practicality of such transformations for integration of noncanonical systems remains
open question. While symplectic discretizations that directly preserve the noncanon
structure can be derived (as shown in Section 4), they typically are highly nonlinear «
implicit and thus computationally expensive in comparison to traditional schemes.

In a broader context, an important question which is actively under study is how to
propriately generalize symplectic integrators to a Hamiltonian PDE framework, i.e. wi
are the relevant geometric features for a PDE integrator to preserve. One long stan
approach to this problem (which has met with varying degrees of success) has been t
troduce a Hamiltonian semi-discretization of the PDE using, for example, spectral meth
or finite differencing and then applying a symplectic scheme to integrate the semi-disci
systemintime; seee.g.[4, 10, 12, 14, 16, 23]. The resulting numerical schemes preserv
symplectic structure of the semi-discretization but as the level of discretization is refir
or the dimension of the system is increased, the advantage obtained using the sympl
integrator can occur only on a long enough timescale (see the numerical experimen
Section 5.1). Another problem with this method is its nonlocality as the system is defir
on a particular phase space which enforces a specific type of boundary condition. Yet
local features of solutions or even existence and properties of a particular class of solut
(e.g., spatial and/or temporal (quasi)periodicity) are of interest.

An alternate generalization to the PDE framework involves a local concept of sympls
ticity and the introduction of “multisymplectic integrators” [6, 7, 15]. Bridges and Reicl
[7] consider PDEs with the following geometrical structure (for convenience we restrict
the “1+4 1" case of one spatial and one temporal dimensions)M.endK be any skew-—
symmetric matrices oR"™"(n > 3) and letS: R" — R beanysmooth function. Then, a
system of the following form

Mz + Kz, = V,52), zeR", 1)

(the gradientV, is defined with respect to the standard inner producRBhis called a
Hamiltonian system on a multisymplectic structargin brief, a multisymplectic PDE.

The term multisymplectic is applied to system (1) in the following sense. Associat
with M andK are the two forms

oU,V)=(MU,V)=VTMU and «(U,V)=(KU,V)=VTKU, U,V eR" (2)

wherew defines a symplectic structure &' (m = rankM < n) associated with the time
direction, andc defines a symplectic structure @ (k = rankK < n) associated with
the x-direction. An important aspect of a multisymplectic structure is that it admits
multisymplectic conservation law. Specifically, 18t V € R" be any two solutions of the
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variational equation associated with (1),
Mdz + Kdz, = D,,S(zdz 3)
Then

ow = (MU, V) + (MU, )
oxk = (KUy, V) + (KU, Vi) (4)

and noting thab,,S(2) is a symmetric matrix, one obtains the multisymplectic conservatio
law

w4 gk = (MU; + KUy, V) — (U, MV, + K V)
= (D:S5(29U,V — (U, D, :S(2)V)
=0. )

Using wedge product notation, (5) is equivalent to
d:[dzA MdZ] + d[dzA KdZ = 0. (6)

Multisymplectic integrators are approximations to (1) which conserve a discretization
the multisymplectic conservation law (5). Many analogies exist between symplectic ¢
multisymplectic structures; likewise between the properties of symplectic and multisy
plectic integrators. Conservation of multisymplecticity (5) is analogous to preservation
the two-form,w; = 0, for Hamiltonian ODEs. In fact, let

0 -l
z=(pP.... PN. 01, ..., 0n), M=J= N,
In O

where allp;, g; are spatially independent, thégdz= 0 leads tdy«x = dx[dzA KdZ =0
and (6) reduces to

wy = 3[dzA JdZ =dpAdq=0,

recovering the familiar notion of preservation of the canonical symplectic structure |
the phase flow. As symplectic integrators are discretizations preserving the twasform
multisymplectic integrators are approximations to (1) which also conserve a discretizat
of the multisymplectic conservation law (5). Similarly, just as symplectic schemes conse
the Hamiltonian extremely well over very long times, multisymplectic schemes conserve
related energy and momentum conservation laws very well (see the results in Section !

Many integrable Hamiltonian PDEs (e.qg., the sine-Gordon (SG) and NLS equations) «
be expressed in a multisymplectic form. Earlier numerical studies of the NLS and SG eq
tions [2, 4, 18] showed that the manner in which the PDE is spatially discretized is of prir
importance for accurate resolution of the qualitative features of the system. For exam
for initial values in the vicinity of homoclinic orbits, standard Hamiltonian discretization
may completely break down and generate spurious temporally chaotic solutions [18]. In1
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paper, we examine the advantages of using geometric integrators to preserve the ess
geometric features of the nonlinear Safliriger (NLS) system

ige + OGxx +20°p =0
—ipt + Pxx +2p?°q =0 7

when periodic boundary conditiong(x + L, t), p(X + L, t)) = (q(x, t), p(x, t)) are im-
posed. Specifically, for the integrable cage= q*) we consider multisymplectic schemes
as well as integrable spatial discretizations with symplectic integrators in time-integra
symplectic schemes.

To derive discretizations preserving the multisymplectic structure of NLS we employ t
Gauss-Legendre (G-L) family of schemes, which is suitable for integration of nonline
wave equations. These integrators were introduced and carefully implemented for the s
Gordon equation in [20]. Here we apply the second-order member of the family to NI
and examine the preservation of the local and global conservation laws. As the numel
experiments demonstrate, multisymplectic methods have much to offer. For instance,
local and global energy are preserved far better than expected given the order of the sch
In addition, the scheme is faster than other second-order geometric integrators examin
the paper and preserves the conjugacy relation between complex coordmates).

Perhaps even more important than the multisymplectic structure is the integrable struc
associated with NLS, so it is natural to consider discretizations preserving it. An interest
feature ofthe NLS is thatits integrable semi-discretization, the Ablowitz—Ladik (AL) syste
(Eg. (37)), possesses a highly nontrivial noncanonical symplectic structure, even tho
the continuous system is canonical. The most general approach for developing sympls
discretizations for noncanonical Hamiltonian systems is to use the generating func
technique. This method has been used for canonical Hamiltonian systems by many auf
(e.g., [8, 21]). In [22] we extended the technique to generate a second-order scheme fc
AL system. Here the algorithm is generalized to develop symplectic integrators of arbitr:
order for a general class of noncanonical systems carrying a symplectic structure of the
type. We implement the second-order member of the resulting family and test it numerice
The experiments show however, that the conjugacy relatiea @) is not preserved by
the discrete flow. In fact, enforcing it as a separate constraint results in degradatiol
preservation of the constants of motion.

An alternate approach to preserving the symplectic structure is to transform the sys
into a form for which standard symplectic integrators can be applied. We introduce two si
transformations. One transformation yields a noncanonical Hamiltonian system for wh
splitting methods can be applied. The second transformation, a Darboux transformat
reduces the AL symplectic structure to canonical form. We initiate a comparison betwe
the various symplectic schemes for the AL system in canonical and noncanical form.
stress the applicability and potential usefulness of the generating function approach
general noncanonical Hamiltonian systems. The numerical experiments indicate that
generating function scheme is more efficient than the standard symplectic schemes ap
to the transformed systems. In fact, such transformations appear to introduce additi
complexity into the form of the equations that poses difficulty even for an efficient alg
rithm such as the implicit midpoint scheme. This demonstrates the difficulties in finding
optimal transform and that it can be more efficient to integrate the AL system in its origir
noncanonical form.
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The rest of the paper is organized as follows. The Hamiltonian and multisymplectic str
ture of NLS is developed in Section 2. Next, in Section 3, the multisymplectic centered c
discretization, which arises by concatenating two second-order members of the G—L fan
is applied to the NLS and its properties are discussed. In particular we find that for the N
the multisymplectic scheme is actually symplectic in time in the traditional sense (the det
are provided in the Appendix). In Section 4 we present the AL integrable discretization
the NLS in canonical and noncanonical form and develop several symplectic schemes
the AL system. Numerical experiments and their results are discussed in Section 5, wi
we compare the performance of the various integrators. In Section 6 we conclude the p.
with a brief discussion of the relative merits of the various geometric integrators.

2. Hamiltonian and Multisymplectic Structure of the NLS Equation

In modeling a variety of physically significant nonlinear phenomena, the conditien
+q* is frequently imposed in (7) and in this case the system reduces to the standard c
nonlinear Schodinger equation (NLS)

i0iq + 9xxq + 2|q/°q = 0. (8)
The NLS equation is a completely integrable system in the sense of the inverse scatte

transform (IST) and can be written as an infinite dimensional Hamiltonian systd»mfgé;)n
when periodic boundary conditiong(x + L, t) = q(x, t), are imposed

a\ _ ,(8H/é0"
() =) ©
with J = ((1) ~5) and Hamiltonian
L
H(q*,q)=i/ (I/* — I/ dx. (10)
0

The symplectic form for the NLS is given by

L dp\T. i (dp :
w_/o (dq) J (dq>dx_/0 (dpAadg)ydx. (12)

Alternately, the NLS can be viewed as a multisymplectic Hamiltonian PDE of type (1
Lettingg = a — ib, the NLS can be rewritten as a pair of real-valued equations

dra = dxxb + 2(a% + b?)b,
(12)
b = —d,xa — 2(a% + b?)a.

Introducing the pair of conjugate momenta= a,, w = by, system (11) has a multisym-
plectic formulation [20]

Mz + Kz, = V,S(2), (13)
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with
0 100 00 -1 0
-1 00 0 oo o0 -1 B ;
M=10 0o0o0| K=[10 o of 2=@buvul
0 000 01 0 0

and Hamiltonian

S = %(vz + w? + (@% + b??),

—db — dyv = 2(a% + b?)a,
da— dyw = 2(a% + bb,

(14)
axa =,
oxb = w.
The multisymplectic conservation law (6) for the NLS is then given by
d[da A db] + d[da A dv + db A dw] = 0. (15)

2.1. Local Conservation Laws

One consequence of multisymplecticity is that when the Hamilto8{anis independent
of x andt, each independent variable gives rise to a conservation law [6]. Conservat
of energy and momentum are associated with translation invariance in time and space
spectively. It is easy to show that multiplying (1) wizh from the left provides the energy
conservation law (ECL)

&E(@ + 0xF(2 =0, (16)
while multiplying (1) withz] from the left yields the momentum conservation law (MCL)
! (2 + kG2 =0, a7)

where

1 1
E@@=S2 - EK(ZX,Z), F(2 = EK(zta 2),
(18)

1 1
G2 =32 - Ew(zt, 2, (9= éw(Zx, 2),
andx andw are defined in (2). Note the(2) itself is not preserved. Implementing re-

lations (16) and (17) for the NLS, one obtains the following energy conservation I
(ECL)

B %((a2 +b%)?2 — v? — w?)| + 3 (vay + why) =0 (19)
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and momentum conservation law (MCL)
1 1
& [Z(aw - vb)] + By {2((a2 +b%2 4+ 2+ w? — (ab —ab)| =0, (20)

respectively. Another conservation law, which we call the norm conservation law for t
reason given below, is given by

& E(a2 + bz)} + 3y (bv —aw) = 0. (21)

These three equations, when integrated with respect to x, yield the classic global conse
tion of energy (Hamiltonian), momentum, and norm.

3. AMULTISYMPLECTIC SCHEME FOR THE NLS

In a similar spirit to the preservation of the symplectic 2-form by symplectic integrator
multisymplectic integrators are designed to preserve a discrete multisymplectic conserva
law. As the multisymplectic structure of PDEs and the use of multisymplectic integratc
have only very recently been explored, we provide the following definition from [7]:

Let the discretization of the multisymplectic PDE (1) and the conservation law of muls
symplecticity be written schematically as

Matlz + KoylZ = (V.S(7))], 22)
and
ol ol + 030! =0, (23)

respectively, Wheraij = z(Xi, tj), ati’j, and aix’i are discretizations of the corresponding
derivativesd; anddy,

ol = (MU, V1) and k= (KUl VT, (24)
and
{Uij }(i,j)erZ’ {VIJ }(i,j)erZ
are two solutions of thdiscrete variational equations
Mai'dZ + KalldZ = DLjs(z)) dZ.

DerINITION 3.1. The numerical scheme (22) is called a multisymplectic integrator
(23) is a discrete conservation law for (22).
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3.1. The Multisymplectic Concatenated Midpoint Rule

Multisymplectic PDEs have a symplectic structure associated with each of the tempt
and spatial variables. Thus, a natural starting point for developing multisymplectic schetr
is to examine schemes which are known to be symplectic in the traditional sense. One
sibility is to concatenate a pair of implicit midpoint discretizations (the simplest symplec
scheme in the Gauss—Legendre family), one inxtdirection and one in the t-direction
[7, 20].

Concatenating the two implicit midpoint discretizations (in either order), one obtains t
following centered cell discretization of (1)

Zj+}—Zj ) j+1 j+1 .
+5 +5 ; — 4 +3
Ll Gl B Rl BAE G 5)
where
i i j J+3 _ j j+1
2y =5@+34). 77 =5@+2")
and

i+ _ Lo 41, j+l
Zys = 2@+ +2dT +70).
The centered cell discretization is multisymplectic for any PDE which possesses the n
tisymplectic formulation (1), i.e., in each cell the discretization satisfies
0t i+3 i+3
i+ 43 Kiy1 — K

=0 26
At AX (26)

exactly, whereoij and/cij are given by (24) [7].
Applying the centered cell discretization to (14), we obtain the following multisymplect
scheme for NLS:

bitl _ pi j+1/2 j+1/2 _ _ _
i+1/2 i+1/2  VUiy1 — U -2 j+1/2\2 ) T1/2 2\ L i+1/2
Al - Ax =2((alf12)" + (Bi12)" )&/,
j+1 j j+1/2 j+1/2
12 @412 Wi — W j+1/22 j+1/2\2\ i+1/2
At - AR 22((3‘1'+1/2) + (b'712) )bi+1/2’ (27)
j+1/2 j+1/2 i+1/2 j+1/2
N S VI 2 Nl SR 1/
AX T2 AX T iz

where the following notation has been used (as above in (25))

fij+1/2 = E(fijﬂ‘*‘ f). flH2 = (fiHl‘f‘ f),

NI

. 1 . , i -
1/2 1 1
fij++1//2 - Z_(fi]J:rl + £+ ).
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For NLS, the corresponding discretization of the multisymplectic conservation law (1
is

j+1 j+ j i 1/2 1/2 1/2 1/2
d&¥+1/2/\dh+1/2 d31+1/2/\dQ+1/2 d&H/ A dv H/ ~|—dlq'+/ A dw |]:1/
At AX

112 qpdt2 _ dhj+l/2 A dwl T2

da i ! —
— 5 =0. (28)

Scheme (27), which we denote by MS in the numerical experiments, is second orde
space and time. Higher order multisymplectic schemes can be obtained by concaten:
higher order members in the Gauss—Legendre family [20]. For completeness, the proof
a concatenated pair of s and r stage (G—L) methods yields a multisymplectic integrator
the NLS equation is provided in the Appendix (Proposition 1). An interesting property
the Gauss—Legendre multisymplectic integrators, when periodic boundary conditions
imposed, is the following

PropPoOsSITION3.1. Let (14) be discretized in space and in time by a pair of Gauss-
Legendre collocation methods with s and r stagespectively. The resulting discretization
is a multisymplectic integrator for the NLS equation. Furth@hen periodic boundary
conditions are imposed the discretizatifin particular Mg yields a finite dimensional
Hamiltonian truncation of the NLS equation in space with the underlying symplectic strt
tureda A Bdb and a symplectic discretization of this finite-dimensional system in(8ee.
the proof in the Appendix as multisymplectic schemes are not automatically symplecti
the traditional sensg.

3.2. Discrete Conservation Laws

Applying the centered cell discretization to (16), the corresponding discrete energy ¢
servation law is
1 _
E|J4J-rl/2 Ei]+l/2 n
At AX

j+1/2 j+1/2
Fll-:?l./ _Fil+/ =0 (29)

where

E|J+1/2 ! { ((5‘1 +1/2)2 + (bij+1/2> 2)2 - ((”ij+1/2)2 + (wij+1/2) 2) }

j+1 j bj +1 b] (30)
FiHL2 _ i1/ a  — g it (B~
! : At : At ’
The discrete momentum conservation law takes the form
j+1 j j+1/2 j+1/2
II+1/2 I|+1/2 + Gi+1 B Gi — O, (31)

At AX

where

IiJ+1/2 =3 (aij+1/2wij+1/2 - bij+l/2vi]+1/2) (32)
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2 I

) b_j+1 _ b_i ) L 4]
a2 B F\ L2 & a
s ) () e

A discrete version of Eq. (21) is given by

Gij+1/2 _ } [((aij-rl/z)z T (bij+1/2)2)2 + (vij+1/2)2 n (w_j+1/2)2

j+1 i j+1/2 j+1/2
Ni-s-1/2 - I\Ii-y-1/2 + Mi+1 - Mi

At AX =0 (34)
where
Ny = %((aij+l/2)2 + (bl12)°)
Mij+1/2 _ bij+1/2 vij+1/2 . aij+1/2wij +1/2' (35)

Reich has shown that multisymplectic Gauss—Legendre schemes preserve both the
crete energy and momentum conservation laws exactly for linear Hamiltonian PDEs (an
gous to symplectic Gauss-Legendre schemes preserving the Hamiltonian exactly for li
Hamiltonian ODES). In the present situation, the local conservation of energy and mom
tum will not be exact for the NLS using (27) sin&2z) is not quadratic. However the
numerical experiments show that the local conservation laws (19) and (20) are prese
very well over long times.

Integrating the densitieE(2), | (2, and N(2) over the spatial domain (with periodic
boundary conditions) leads to the global conserved quantities

d d d
a5(2) =0, aI(z) =0, and &N(z) =0, (36)

where€(2 = [ E@dx, Z(@ = f; 1 (@dx andN(@ = [, N(2 dx. In the numeri-
cal experiments we monitor both the local and global conservation of energy, moment
and the norm and find that the global momentum and norm are preserved within rounc
This substantiates that global conservation properties are weaker conditions, i.e., that g
conservation of e.g., energy or momentum (36) is a necessary but not sufficient condi
for local conservation of energy or momentum (16) and (17). For a further discussion
global versus local conservation properties, see [20].

4. SYMPLECTIC INTEGRATORS FOR THE ABLOWITZ-LADIK
DISCRETE NLS SYSTEM

Apart from multisymplectic discretizations, we consider spatial semi-discretizations
NLS that are Hamiltonian with respect to a symplectic structure that is a discrete vers
of (11) and derive symplectic time integrators for them. The Ablowitz—Ladik (AL) discret
NLS is an obvious choice as it is a completely integrable Hamiltonian system for all N (t
discretization parameter) when the conjugacy condifige= £q;" is imposed [1].
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4.1. The Ablowitz—Ladik System
The Ablowitz—Ladik discrete NLS system

d Oh-1+ Ony1 — 29

I ——0n + 2 %+ PnGn(Gn—1+ Gns1) =0
dt h (37)
. d 1+ -2
—I = Pn+ Pt pn;l i + Pnln(Pn-1+ Pnt1) =0,
dt h
has a noncanonical Hamiltonian form
z=P@VH (2, (38)
wherez= (p,q) = (P1,---, Pn> 1, -- -, On) @ndp = u*, g = u are the conjugate vari-
ables. The Hamiltonian is given by
. N
H = = S Ih2pn(@n-1 + tnss) — 2In(L + h2g po)] (39)
= he Pn(On—1 + On+1 Qn Pn)],
n=1
where the Poisson bracket tenfgp) is a 2N x 2N skew-symmetric matrix
0 -R . 1+h?
P(Z)Z (R 0 ) ) delag[rjn""rN]v h= %7 (40)
so that the fundamental Poisson brackets are given in coordimatgstly
{Pm, On} = —Tndmn, {Pm, Pn} = {Om, On} = 0. (41)

The phase space of any Hamiltonian system with a nondegenerate bracket carries a n:
symplectic structure. For the AL system (37), the symplectic 2-form is given by

N

h
w(P,Q)=Zmdph/\dqn (42)

n=1

Inthe continuum limibh — 0 with p, = g the HamiltoniarH and the nonstandard Poisson
bracket{,} for the AL system approach the Hamiltonian and the standard Poisson bracl
respectively, for the NLS PDE, and the form (42) reduces to the continuous form (11). T
AL system inherits all the properties of the original PDE system, and it is possible to der
the N-soliton solution for rapidly decreasing whole-line boundary conditions, as well
guasi-periodic Riemann theta function solutions for periodic boundary conditions [1, 1¢

As mentioned above, the AL system carries on its phase space a noncanonical sym|
tic structure, for which standard symplectic integrators are not immediately applicable. |
example, symplectic implicit Runge—Kutta schemes for AL (38) do not exist. We explo
several methods for obtaining symplectic schemes for the discrete AL system: (1) we in
duce a time dependent coordinate transformation which yields a noncanonical Hamiltor
for which splitting methods can be applied (2) using an additional transformation we |
duce the symplectic structure to canonical form and apply standard symplectic schemes
(3) via the generating function method, we develop integrators that preserve the origi
noncanonical structure (38).
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4.2. A Separable Form of the Ablowitz—Ladik System

Under the time-dependent unitary transformatiqn— (a, + ibp)e2t/"*, the AL sys-
tem is transformed into another noncanonical Hamiltonian systeealicoordinatesd, b)
[24]. Letting wn(t) = un(t)e?!/"* then the new equations of motion are

. 1
Wn = I (Wn-1 + wnt1) <hz + |wn|2> . (43)

We remark that the equations of motion in this form do not have a well-defined limit .
h — 0 since the phase of the right-hand side is then undefined. Scaling of time is neces
to regularize the limit, which is equivalent to a transformation to a system of the origir
AL form.

Separatingu, = a, + iby into real and imaginary parts, we obtain the following equa:
tions of motion in the new real coordinates

an = —Cn(Bny1 + bn_a), bn =Ch@nit+a-1), Ch=1+ h? (aﬁ + bﬁ) (44)
These can be cast as a noncanonical Hamiltonian system
Z=K(Z)VH(2), (45)

whereZ = [a7,b"]",a=[as,...,an]", b =[by, ..., bN]",

0 -S
K(2) = (s o)

with S = diag[s;, . . ., sn], ands, = 1+ h?(a2 + b2) and

N
1
H= 2 Z[anan-H + bnbn 1] (46)

n=1

Denoting the right-hand side of (45) by the vector figldZ), we write the system in the
form

2=V (2). (47)

A symplectic method for the integration of (47) can be obtained based on the followi
splitting of V: the vector fieldv separates into the sum of tiAefield

an = —(1+h?(@3 + b2)) (bns1 + bno1), b =0, (48)
and theB-field
an =0, bn= (1+h?*@2+b?))@n1+ an1). (49)

Both systems are Hamiltonian with respect to the same Poisson bracket as (45) anc
corresponding Hamiltonians are given by

1 1
HAZ) = 5 andns1, He(Z) =15 bubnia.

n=1 n=1
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Both systems can be trivially integrated. We considerAkbgystem (48) first and let

— 1
Bn = bn_1 + bnya, Br? = <|’]2 + br21>, An = an.
Then

d _ _ —
d—Atn = —Bn(BZ+ A3), B, =const B, = const

which is easily integrated in the form

A0 _ tan(B, Bat)
An(t) = Bn An(O) = .
1+ B tan(B, Bnt)

The B-system (49) is similarly integrated as (with the obvious changes in notation)

B0 4 tan(AnAnt)

n

Ba(t) = A e
n(®) "1- BO tan( A An)

We denote the correspondisgmplectidlow by exp At and expBt. To approximate the
flow corresponding t&/ we can use the Baker—Campbell-Hausdorff formula to expan
expt A + tB) in terms of compositions of expA and expt B, and match the terms up to
the given order in. Additional constraints have to be placed on the expansion coefficier
to ensure that the compound flow is symplectic as well. This is done systematically in [1
we use a well-known second-order sympledtiapfrog methodhat defines a symplectic
approximationZ (t) to exptV as

= 1 1
Z() = <exp§tA) (exptB) (expétA). (50)
We denote this integrator by LF.

4.3. The Ablowitz—Ladik System in Canonical Form

In general, any nondegenerate symplectic form can be reduced to the canonical one
a suitable local coordinate transformation. These transformations are not unique since
Darboux transform followed by a symplectic map reduces the system to canonical form
particular, we consider such transformations for the AL system and upon reduction ap
standard symplectic integrators.

We begin with the transformed noncanonical Hamiltonian system (45). Next, standa
ization of the symplectic structure is accomplished using the Darboux transformat
(a, b) — (c, d) given by

1
a, = = /1+ h2d? tan<h\/1+ hzdﬁcn).
bn == dn.
The AL system can then be rewritten in the canonical form (denoted by the c-AL systel

Y = JVH(Y), (51)
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whereY = [c",d"]T,c=1cy,...,cn]T.d=[dy, ..., dn]T,

0 -l
= 7o)
with | being the identity matrix and
N

1 1
H(c, d) = hZZ{h \/ 1+ h2d? tan(h,/1+h2d§cn)

=1

\/1+h2d2, tan(h\ /1+ h2d? chﬂ) + OnGn1. (52)

The c-AL system can then be discretized in time using standard symplectic schemes
as the second-order implicit midpoint rule (see Section 4.5), and we denote this integr
as CS2.

Sl 5

4.4, Symplectic Schemes for the Noncanonical AL System

An alternate approach to standardization of the symplectic structure is to construct inte
tors that directly preserve the noncanonical form (42). Since the form (42) is not of poten
type, Hamilton—Jacobi theory does not apply. Thus, the most appropriate approach tc
riving symplectic integrators for the AL system is based on generating functions [11, 2
In this section, the method is generalized to generate symplectic integrators of arbiti
order for general noncanonical systems carrying a symplectic structure of the AL type.

We consider symplectic structures given by 2-forms of the type

N
®(P, 9 =>_ (P, Gr)dpy A dap,

n=1

wherewn(pn, gn) is a function of(p,, g,) only. This is perhaps the simplest form of a
noncanonical symplectic structure; the standard form is recovered from this expressiol
settingw, = 1. For the AL systeme, = —rn‘l. The Poisson bracket dual to has the
fundamental brackets.

{Pm, On} = —Omn,In = _Sm,nwgl, {Pm, Pn} = {Om, Gn} = 0.

and the equations of motion generated by a Hamiltonian fundfigm q) relative to this
bracket have the form

oH oH
Dh = —[n—— g, = _ 53
Pn Mn T On rnapn (53)

A transformationp, q) — (P, Q) is called symplectic with respect toif
w(p,q) =P, Q). (54)

Sincew is closed, it is exact, at least locally, and there exists a local primitive 1-fgrm
such thatw = d@. The primitive is not unique since for any smooth functierthe form
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0’ =6 4+ dF is also a (local) primitive foto. One suct® can be obtained by integrating
with respect t@ along any path in a simply connected neighborhoogof] as follows

N Py
6(p,q) =fdg= Z fa(Pn, dn) dah,  fn(Pa, Qn) = / wn(&, Qn) d&.

n=1

Likewise, integrating with respect tpobtains another primitive

N Qn
(P @) = ~gdp= ~ > Ga(Pr. ) AP Gu(Pa Q) = [ wn(Pr.£) .

n=1 On

Givenanytwo primitivesd andd’, we can write (54) as
dé(p, @) —dé’(P,Q) =0,

which means that(p, q) — 6’(P, Q) is also closed and thus locally exact. Therefore,
6(p,q) —6'(P,Q) =dG (55)

for some smooth functio®. In general, (55) characterizes any symplectic nmm){ —
(P, Q) and the functionG is called thegenerating functiorof the transformation [5].
Equations (55) can be solved f&,(Q) in the vicinity of the pointp, q) to obtain an explicit
local representation of the transformation. In particular, since the phase flow generate
the equations of motion (53) is a symplectic map for any value of the time parameter,
sufficiently smallt we can obtain an explicit representation of the flow in local coordinate
P, Q. We follow Channell and Scovel's approach (see [8]), which uses the transformat
equations with a certain generating functiénto define the approximate flow so that it
is exactly symplectic. The functio® is specified by an asymptotic power expansiot in
obtained from the equations of motion to ensure the prescribed accuracy of the method
of the following constructions are local, taking place in a neighborhood of some poajt (
where the formw is assumed nondegenerate and all functions are sufficiently smooth.
Taking the primitive® = fdq and¢’ = —gdpobtained above, the transformation equa-
tions (55) become

fdg + gdP = dG,

or in the component form

G G
3_Qn = fn(pn, On), 3—Pn = On(Pn, Qn). (56)

Note thatG is a generating function of the second kind, i.e., such that

092G
aPaq

is nondegenerate, so we can taked) to be the local coordinates in the neighborhood of
(p, g). Let (P(t), Q(t)) be the solution of the system (53) with the initial dgtaq) and for
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sufficiently smallt. The right-hand side of the equations of motion

P,Q), Qn=Ri== (P, Q), Ry=rn(P, Qn) (57)

is smooth in a neighborhood gd,(q), which justifies asymptotic power expansions for
Qn(t) at the point p, q). Likewise, smoothness df, andg, and the relations (56) imply
the existence of a similar expansion fart). Thus, we have asymptotic expressions

oo tm oo tm
Qu®) =G+ > —QmaP.0), G =) —Gm(P.0) (58)
m=1 m=0

Aln

holding in the vicinity of f, q). Now we can solve fo6 in terms ofQp . To do so, write
the second part of the transformation equations as an asymptotic setias (o, q) by
expandingg, in a Taylor series abouf with Aq defined above:

S Uenp =3 L (Aq ! )kg<P 5

— omlF, = Iy n, . n{Fn; Un
m=0m! = k! aqn

kz:g (Z an) gn(Pm Qn)

=0

Expanding the double series obtains an asymptotic seriag for

S (S hen )
o Qsn 9n(Pn, )
=kl \ & ! 9
[e%e) m akgn 1 an Iy an
= Ztmz (Pn’ Qn) Z ( ) ( >
e Sl L L LETH U sl
Zh:m
> ili=
Omn

Equating powers df yields the following relation between the coefficiefs and Qm n

aGm 1 )" mn )™

lisernlm>0
> =k
> ili=m

If the Qmn were known, thés, could be easily determined by integration. TQg , are
calculated using the equations of motion as follows. The full-time derivativ@,as

: 9Qn 9Qn -
= P,
Q@n ot +; ap; !
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and using (57) it is written

0Qn _ , dH 9Qn
ot R”aPn ZaPJ R‘aQ,' (60)

Next we obtain asymptotic expansions f&y and the derivatives dfl in the same way as
was done fog, above

Ry = ZtmRm,n(Pn» On),

oH i ad
- H H
Ty mz:: me P Q). Qn mX:: m.0n (P> Q)

with exact expressions f&my, n, Hm, p,, andHm, o, given in the Appendix. Upon substituting
these series into (60Qmn can be solved for recursively since a coupling exists amon
Qm.n such that all the terms appearing on the right-hand side have loviedices than
that on the left, i.e.,

8Q
Qmt1n =m! E RsnHkp, + § o E = Rk.j Hig | - (61)
s+k=m s+k+l=m
s,k>0 s>1,k,I1>0

OnceQm,n, are obtained and substituted into (59), expression&fpare integrated and
the generating function G is specified in the form

o0 tm
GP.q) =) —Gn(P,q).
m=0

It can be calculated to any prescribed accuracy uaimdinite expansion

. -
G =) —Gn(P.q). (62)

m=0

as long as is sufficiently small. Thus, the truncated functiGrip, q) generates the trans-
formation equations

3G L.
fn(p,q)=£(P,q), (P, Q) = (63)

which can be solved foil, Q) to define a symplectic transformatiom, ¢) — (P, Q) that
agrees with the exact floyp(q) — (P, Q) tor-th order. We state this fact as follows:

ProPOSITION4.2. Transformation equation®3)obtained from a truncated generating
function(62) can be solved uniquely for sufficiently small t to prod(ReQ) such that

P, Q) =P, Q+01*h, (64)
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where(P, Q) are the solution of the transformation equations with the exact generatir
function G corresponding to the Hamiltonian flow of the sys{gm).

The rather obvious proof of this statement is deferred to the Appendix, while we use t
result to derive a second-order symplectic discretization of the AL system.
In the case of the AL system,

1
fa(Pn, On) = ﬁ IN(L+ h?pnthn), Gn(Pn, Qn) = |n(1+ h?P,Qn),
and using the well-known Taylor series for In yields an expressic%%pfas obtained from

(59)

3Go
0P

Py thZ( D7 k=Dt 1+ h2P,an

- n,.%m:zo 11! "1'|m! (Qll!.n)ll .<QS”!‘*”>Im
> =k
> ili=m

(65)

Next, using the expression for the Hamiltonian dd= % along with the formulae
for their expansion coefficients found in the Appendix, we solv&jgr, withm = 1, 2 and
substitute into (64). Except fon = 0, these expressions are identified as total derivative
and trivially integrated to yield

N Py
Go(P, @) = Z / —In(1+h2Pns)ds=Z / hihlr1<1+hzsqn)ols,

oH oH
Gi(P, ) = H, Gy(P, 1+ h?Piq

1(P, q) 2(P, Q) = Z(+ 955 5,
Substituting the truncated generating funct®r= Gy + tG; + %Gg into (63) and solving
for P, andQp, the following second-order symplectic scheme

. 1+ h? ) ex 1 2
B — 0n Pn p( qﬂaqn) ’ E:tGl+t—G2
h2q, 2
3 i (66)
. (A+h2aPyexp(hPnif) -1
Qn= hZB, ,

which we denote (66) by S2. Note th@p generates the identity transformation, and its
exact expression is not needed.

As the scheme is implicit, to advance one time step frpng) to (P, Q) the system (66)
has to be solved using some type of nonlinear solver. We choose to use a simple fixed-
iteration procedure (FPI), which converges rapidly with a good initial guess givem by (
for all values oft that we used in our numerical experiments.
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4.5. Standard Schemes

Standard time integrators are also used in the numerical study below for comparison \
the geometric integrators derived in the proceeding sections as well as in the implemente
of AL in canonical form. Specifically, we use the explicit second-order Runge—Kutta al
the implicit midpoint schemes defined below. Given a dynamical system

7= F(2

and initial dataz, we compute an approximati(ﬂwat the timet by the explicit second-order
Runge—Kutta scheme

~ t

Z:z+tF<z+2F(Z)> (67)
and by the implicit midpoint scheme

~ 1 ~

Z=z+tF (2(z+2)>. (68)

We denote (67) and (68) by R2 and CS2, respectively. The implicit midpoint rule, CS2,
the lowest order member of the Gauss—Legendre family of implicit Runge—Kutta methc
which are symplectic schemes for canonical Hamiltonian systems [13, 21]. Thus, C
defines a symplectic transformation when applied to the canonical AL system. As CS:!
implicit, we use the same nonlinear solver (FPI) as with S2 to oft@ineach time step.

5. NUMERICAL EXPERIMENTS

In this section we examine the performance of the symplectic and multisymplectic me
ods in solving the NLS equation under periodic boundary conditigrst+ L, t) = q(x, t)
over the time interval [0T] with T = 500. For consistency, all the discretizations of the
PDE examined are second order in space and time with a fixed time step used throughot
integration. We are interested in simulating multiphase quasi-periodic (in time) solutiol
Initial data can be obtained by perturbing the plane wave solatiox, t) = a€? lal’t
the experiments, we use initial data of the form

an(0) = p;(0) = 0.5(1 + € cOuXn)) (69)

forxp,=—L/24+ (M —1h, h=L/N, n=1,2,...,N+1,wherec =102, u = 2r/L
andL is either (69a)L = 2+/27 or (69b) L = 4/2r. The plane wave solution is mod-
ulationally unstable and for a fixed amplitude, as the period L is increased, the num
of unstable modes increases. Thus, initial data (69a) and (69b) correspond to multipt
solutions, near the plane wave, which are characterized by either one or two excited mo
respectively. For brevity, we will refer to these cases as the one-mode and two-mode ¢
In almost all the experiments initial data (69a) is used. It is only in the final comparis
between the generating function symplectic scheme and the multisymplectic scheme
we consider initial data (69b).
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5.1. The Noncanonical AL System: Symplectic Versus Nonsymplectic Integrators

We begin by comparing the performance of the generating function symplectic scheme
(66) and the explicit Runge—Kutta scheme R2 (67), applied to the noncanonical AL syst
(37) for the one-mode case (69a). The numerical schemes are evaluated by monitorin
HamiltonianH (39), the norml defined as

N

(. @) = _[Pn(Ch-1+ Ghs)]. (70)

n=1

as well as the amplitude of the waveform of the solution.

Figures 1a and 1b show the error in the Hamiltonian obtained using S2 and R2
(&) N = 4 witht = 1072 and for (b)N = 32 witht = 10~3. The symplectic scheme S2
preserves the Hamiltonian extremely well during long time integrations as the error in
Hamiltonian oscillates in a bounded fashion and does not exhibit a linear drift as it does v
R2. However, the linear error growth in H which occurs using the nonsymplectic meth
becomes less significant as the time stefecreases and the dimension of the system |
increases (compare Figs. 1la and 1b).

This behavior is summarized in Table | which provides the maximum ertdrafnthe AL
system as afunction of N and t using schemes S2 and R2, i.e., for mesNsizds 16, 32,

5 HAMILTONIAN
142 HAMILTONIAN
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0 50 100 |5;u 200 TZ;D 3(')0 J.;:O 6[;0 I;O 500 [] 50 100 150 200 13;0 3(“0 Jf‘w 4(‘)0 4‘50 500

FIG. 1. Comparison of integrators S2 and R2 for the noncanonical AL system: (a) error in the Hamiltoni
for N = 4 witht = 1072, (b) error in the Hamiltonian foN = 32 witht = 1073, (c) Amplitude ofq, for N = 16
with t = 1072, (d) Conjugacy deviatiofp; — q| for N = 16 witht = 103,
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TABLE |
Maximum Absolute Error in the AL Hamiltonian Obtained with S2
and R2 for T = 500

N 4 4 16 16 32 32 64 64
t 1.0E-02 1.0E-03 10E-02 1.0E-03 1.0E-03 1.0E-04 5.0E-04 1.0E-04

S2 7.1E-06 7.1E-08 2.7E-04 2.7E-06 3.7E-06 5.1E-08 1.0E-06 1.0E-07
R2 1.3E-05 3.5E-08 2.2E-04 5.2E-07 6.0E-07 4.1E-09 1.2E-07 4.1E-09

and 64, each for two time steps. The preservation of the second invaignot presented
as it is qualitatively similar td1. The experiments with different time stepmdicate that
the error in the Hamiltonian is bounded fyt? for the method S2, whereas it behaves like
ap,t? + Br, Tt for the method R2. The dependence of the constagtsrg,, andgr, on
the space discretization paramehteas less clear (see Table I).

Figure 1c shows the amplitude gf of the solution obtained with the two integrators
R2 and S2 using\ = 16 andt = 10-2. Solutions of the AL system exhibit regular quasi-
periodic motion because of the fact that the AL flow occurs in general dw-gorus. For
t = 0.01, a phase lag develops using R2 which becomes more pronounced as the sy
evolves. However, using= 0.001 the solutions from the two integrators are virtually
indistinguishable on the time scale examined. The amplitudes of the other lattice sites s
similar qualitative behavior.

The conjugacy relatioq = p* arises in the applications of the NLS of physical interest
[9, 25], thus preserving this additional constraint can potentially be as important as
serving the symplectic structure. It is of interest then to consider initial data of this for
and to determine which of the schemes minimiges g*|, the deviation from conjugacy.
Figure 1d shows that the deviation|ip; — g;| for N = 16 andt = 10~3 is of size 10°
using S2, whereas with R2 it is on the order of roundoff (the deviatiofpin- q| is
comparable for general n). Note: AlthougtiO) = p*(0) and the semidiscrete AL flow
preserves conjugacy, this condition is not imposed throughout the time evolution as
performance of the integrator degrades. In fact, if the relation is imposed and the impl
scheme is solved for jusi, at each time step, a linear error growth in the Hamiltoniar
occurs indicating that in this case the scheme is not symplectic [22].

Both schemes exhibit stability issues as can be seen frol thed andN = 16 cases.
Keeping the time step fixed and varyihg(equivalently h), as h decreases the performanc
of both schemes degrades. This suggests tthiat < M, for someM, is required for
stability. The instability is more pronounced for the explicit scheme R2 than for either
the symplectic schemes. It is surprising then that R2 preserves conjugacy better, indice
that instabilities of R2 lie in the = g* subspace, whereas for S2 they are transverse to i

It should be mentioned that R2, being an explicit scheme, is faster than S2 and
difference in computation time becomes more significant as the dimeniiarf the semi-
discrete systemis increased. Atthe same time, the difference in accuracy of the two sche
manifests on a longer time scale, makiRg attractive for intermediate integration times.

5.2. The Symplectic Integrators in Noncanonical and Canonical Form

Next we compare the performance of the leapfrog method LF (50), the symplectic can
ical implicit midpoint scheme CS2 (68) and the generating function symplectic scheme



NONLINEAR SCHRODINGER EQUATION 137
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FIG.2. The errorinthe Hamiltonian, féF = 500, obtained with (a) the LF integrator usiNg= 32,t = 104
and (b) the canonical AL integrator usity= 32,t = 102,

(66) for the one-mode case (69a). Initialization and comparison of the constants of mo
and waveform for the various integration methods is done in the original coordinate sys
(p, ), i.e., we unwind all transformations before the AL Hamiltonian (39) is computed ar
output is generated. For the implicit schemes, the same criterion is used to accept a sol
of the iterative procedure at each time step, namelyl_theorm of the error has to be less
than 10719,

Both LF and CS2 exhibit the characteristic behavior of symplectic schemes. As an
ample, Fig. 2 shows the error in the Hamiltonian, which is nicely bounded over long tinr
obtained with (a) LF usingN = 32,t = 10~% and (b) CS2 usindN = 32,t = 1073, both
for T = 500. Table Il provides the maximum absolute error in the AL Hamiltonian (3¢
obtained with the symplectic schemes CS2, S2, and LF for meshi¢ize82 and 64, each
for two time steps. For fixed th = L/N), halving the time step results in a decrease in th
maximum error in H by a factor of 2. An example of this is shown in the table fir= 32.
This supports the conjecture that for the LF and CS2 methods, the error in H is bounde
YLrt? andycot?, respectively, similar to the results for S2. However, the maximum error |
H obtained with LF and CS2 is at least two orders of magnitude larger than with S2. Th
the error coefficients, r, ycg are significantly larger thaps,. In Fig. 2a, small amplitude,
high-frequency background oscillations are visible against the dominant large amplitu
low-frequency oscillations (whose frequency corresponds to that of the excited mode in
AL solution). The time-dependent map— w is responsible for the high-frequency oscil-
lations as well as the less accurate resolution of the Hamiltonian exhibited by LF and C

TABLE I
Maximum Absolute Error in the AL Hamiltonian Obtained Using
the Symplectic Schemes CS2, S2, and LF far = 500

N 32 32 64 64

t 2.0E-03 1.0E-03 5.0E-04 1.0E-04
Cs2 1.2E-03 3.0E-04 1.0E-03 4.5E-05
S2 1.5E-05 3.7E-06 1.0E-06 1.0E-07

LF 1.3E-03 3.2E-04 1.6E-03 6.4E-05
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In the experiments, CS2 was found to be less efficient than S2 as it requires almos
much CPU time as S2 even though it is less accurate. On the other hand, LF is relati
fast and easy to implement but is also less accurate than S2. In addition, the method is b
on a particular feature of (44)—its separable nature, which is not apparent from the origi
AL formulation, nor general enough. Although there is no loss of conjugacy when using
and CS2, we emphasize the utility of the generating function method for its ability to hant
a wide class of noncanonical Hamiltonian systems. To obtain a robust symplectic integr:
which preserve, = q; exactly, the conjugacy condition should be imposed first. The
lettingg, = a, + ibp, the AL system can be written in real form and the generating functio
method developed in Section 4 applied to the real noncanonical system.

5.3. The Multisymplectic Integrator

Lastly, we consider the multisymplectic scheme MS. As before, we use initial conditio
(69a) and examine the performance of the scheme for different mesh sizes and time ¢
(see Table Ill). The multisymplectic discretization (27) is implicit and can be solved usir
iteration schemes. All the local conservation laws are of the general form

T +0xF =0, (71)
and multiplying the discrete conservation laws (29)—(31AxAt, they can be written as

(T2 = Tha) Ax + (FLY2 = F %) At =0 (72)
In addition to the local energy and momentum conservation laws, we monitor the errol
the global invariant§ (t), Z(t), andN (t). Once the local conservation laws (29)—(31) have
been evaluated, we obtain a second-order approximation to the global conserved quan
by implementing (72) and summing in space and time.

Figure 3 provides the results obtained using MS for initial data (69a), Witk 64
andt = 5 x 1073 over the time interval [0, 500]. For clarity, in the surface plots we only
show the time slice [450, 500]. The surface of the one mode multiphase solution (Fig.
displays quasiperiodic behavior in time. Figures 3b and 3c show the errors in the lo
energy and momentum conservation laws as given by (29)—(31). The errors in the Ic
conservation laws are concentrated in the regions of the multiphase solution where tl
are steep gradients. The corresponding error in the global energy and momentum |
the time interval [0, 500] are given in Figs. 3d and 3e. It is worth noting that the glob
momentum and norm (not shown) are consereattly(up to the error criterion of 10
in the iteration procedure in the implicit MS scheme) since they are quadratic invarian
Clearly, this is a very attractive feature of the MS scheme. Further, the error in the glo
energy oscillates in a bounded fashion as is typical of the behavior of a symplectic integr:
(recall Proposition 1, where MS is shown to be symplectic).

The maximum error in the local energy and momentum and global energy and momen
for the multisymplectic scheme are provided in Table 11l for mesh sites 32 and 64,
each for three time steps. From the experiments it is readily seen that the error in the |
energy conservation law (29) depends only on the timetsiep that the the error is second
order int (successively halving the time step decreases the LE error each time by a fa
of 272). In contrast, the error in the local momentum conservation law (31) depends ol
on the spatial mesh sia¢ and, as anticipated, the error in LM is second order in h.
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TABLE Il

139

The Absolute Maximum Error in the Local Energy and Momentum and the Global Energy
and Momentum Obtained Using the Multisymplectic Scheme MS, withT = 500

N 32 32 32 64 64 64

t 2.0E-02 1.0E-02 5.E-03 2.0E-02 1.0E-02 5.0E-03
LE 6.0E-05 1.5E-05 4.0E-06 8.0E-05 2.0E-05 5.0E-06
LM 1.7E-02 1.7E-02 1.7E-02 4.8E-03 4.8E-03 4.8E-03
GE 7.3E-05 2.0E-05 5.0E-06 7.6E-05 2.2E-05 5.0E-06
GM 1.2E-13 2.5E-14 2.0E-13 1.3E-13 1.0E-13 4.5E-13
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FIG.3. The multisymplectic scheme MS with = 64 andt =5 x 103, T = 500: (a) surface, (b—c) error in
the local energy and momentum conservation law, respectively, (d—e) error in the global energy and momer

respectively.
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The approximation to the global energy, GE, obtained using the MS scheme and
Hamiltonian for the AL system both provide a second-order approximation to the NI
Hamiltonian. In comparing the error in the GE in Table Il with the errors in the Hamiltonia
in Tables | and 1l we see that the multisymplectic scheme preserves the global energy b
than both S2 and CS2. So in addition to having very good resolution of the local conserva
laws, the multisymplectic scheme preserves the global energy extremely well (and the gl
momentum and norm exactly!). Another important feature of the MS method is that it
significantly faster than the symplectic schemes S2 and CS2.

A final issue to consider is the preservation of the qualitative properties of the solutic
Since to consider S2 to be the most robust of the symplectic integrators for the AL syst
we compare the performance of MS with that of S2. As mentioned before, the surface of
waveform obtained using MS for initial data (69a) with discretization parambters64,

t =5 x 1073 is given in Fig. 3a for the time frame 458t < 500. Implementing S2 with
the same discretization parameters and for the same initial data, the surface of the wave
appears identical to Fig. 3a. This is initial data for a stable multiphase solution of NLS al
although “near” the unstable plane wave solution, it is not “too close” (as measured
spectral space; see [3]). It is expected that when simulating other stable solutions of N
e.g., solitons (which are actually a limiting case of the multiphase solutions withdo),

the MS and S2 schemes will comparably preserve the qualitative features of the wavefc
However, when examining more complex solutions there can be a striking difference in

AL Schome - Ampltude

MS Scheme - Amplitude

Space

10 GLOBAL ENERGY x10° GLOBAL ENERGY

25

DALY T

o 20 a0 80 80 100 120 140 160 180 200 o 20 40 60 80 100 120 140 60 180 200
fime time

FIG. 4. The two mode multiphase solution with = 64,t =5 x 10~ andT = 500: (a—b) the surface of the
waveform obtained using the S2 and the MS discretization, respectively and (c—d) the error in the global en
obtained using the S2 and the MS discretization, respectively, for initial data (69b).
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S2 and MS results. In highly sensitive regimes, where the proximity to unstable solutic
and numerically induced chaos is an important computational issue, the integrability of
AL discretization beomes crucial. Figure 4 shows (a-b) the surface of the waveform and (i
the error in the global energy obtained using the S2 and the MS discretization, respecti
for initial data (69b) with discretization parametés= 64,t = 5 x 102, andT = 500.
Notice that the AL based S2 scheme accurately captures the quasiperiodic motion.
the other hand, using the MS integrator, the onset of numerically induced temporal ch
is observed. A random switching in time of the location of the spatial excitations in tl
waveform is clearly visible, even though MS preserves the global energy better than
(see Figs. 4c and 4d). As a consequence, for sensitive regimes, the significant improve
in the qualitative features of the waveform obtained with the integrable AL-S2 schel
justifies the computational expense. The advantages of the MS scheme are as follo
when considering nonsensitive regimes such as the one-mode multiphase solution,
faster, there is no loss of conjugacy, it handles a wide range of mesh size and it prese
the local conservation laws and global invariants as well or better than S2.

6. CONCLUSIONS

In this paper we have analyzed and developed various geometric integrators for the |
system. The numerical experiments indicate that when compared to traditional integrat
represented by a Runge—Kutta method R2, geometric schemes are generally more effi
in preservation of geometric features of the system, such as local and global conse
guantities (actions), quasiperiodic character of the motion and qualitative features of
waveform. At the same time, geometric integrators typically result in highly nonline
implicit schemes that are slower than the more straightforward explicit R2. In additic
various relative advantages of some geometric integrators become less pronounced &
values of discretization parametérandt tend to zero, approximating the PDE, while their
relative run-time performance degrades further. In this regard, the multisymplectic sche
is an exception since its accuracy improves as the PDE limit is approached and the run-
performance does not suffer substantially.

It is important to emphasize that geometric integrators do reproduce several qualita
features of NLS better than R2. In particular, they preserve the action values much be
as the deviations in the integrals from the initial values stay bounded, while R2 produ
essentially linear drifts. The implications are that for very long time simulations, importa
for statistical studies of the NLS system and its perturbations, geometric integrators pro
an effective tool. Indeed, averaged quantities obtained with such schemes are much |
likely to reflect those of the original system than the statistics obtained with R2 becal
of uncompensated mean drifts. In this situation, the extra cost associated with geom
schemes is well worth the result.

Among the geometric schemes, performance varied for different parameter values
initial data. The multisymplectic scheme seems to be the best in terms of run-time per
mance and the quality of preservation of the local and global integrals of motion. Atthe sa
time, using initial data for the two mode multiphase solutions of NLS, MS fails to captu
the proper PDE waveform despite excellent integral preservation. In contrast, symple
schemes for the AL system never preserve integrals to the same degree but faithfully re
duce the qualitative features of the wave profile and the quasiperiodic character ofthe mo
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To obtain symplectic integrators for the integrable semi-discretization of NLS, the A
system, we extended the canonical procedure based on generating functions to a f
wide class of noncanonical systems carrying a symplectic structure of the AL type ¢
potentially a much wider class of systems. The integrators derived from this generat
function technique appear to be very robust and provide a rather general tool for nonlir
Hamiltonian systems. This is in contrast with methods based on vector field splitting wh
appear less general in this setting.

In summary, geometric integrators provide an “expensive” but valuable tool for studi
of long time behavior of nonlinear PDEs, and different schemes are preferred in differ
parameter regimes and for different initial data. The approach to construction of st
integrators via generating functions appears to be fairly general and robust. The ne
emerging class of multisymplectic integrators for nonlinear wave equations also proy
extremely promising, although limits of applicability of this method are still to be precisel
determined, as it includes simple and fast schemes with remarkable conservation prope
for local as well as global invariants.

APPENDIX I: PROOF OF PROPOSITION 1

PrROPOSITIONA.1. Let (14) be discretized in space and in time by a pair of Gauss-
Legendre collocation methods with s and r stagespectively. The resulting discretization
is a multisymplectic integrator for the NLS equation. Furthethen periodic boundary
conditions are imposed the discretization yields a finite dimensional Hamiltonian truncati
of the NLS equation in space with the underlying symplectic structure Bab and a
sympledt discretization of this finite-dimensional system in time.

As in [20], we begin by discretizing in space and apply an implicit s-stage Rung
Kutta scheme to the multisymplectic formulation of NLS (14) to obtain the spatial sen
discretization,

S
A =ak+AxZ€14jVj,
=1

S
Vi = v+ Ax D & (-3Bj — 2(AF + Bf) Aj).
=1
S
B; =bk+AXZéijo,
=1
(A1)

S
W = wk+AXZéij (3tAj _Z(AJ2+ BJZ)BJ')’
=1

S
Ac+1 Zak-i-AXZBjVj,
=1

S
vkp1 = v+ AX Y Bj(—8Bj — 2(A%+ BY)A),
j=1
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s
b1 = bk + AXZB]WJ',
=1

S
wier = wi+ Ax Y by (8 A] — 2(A%+ BHB),
j=1

which is defined for all t. The standard notatigp(t) ~ u(x, t) is employed, and for
convenience we sét= 0 and assume thak = 0. The corresponding semi-discretization
of conservation law (15) is given by

S
[day A dvy — dag A dvg] + [dby A dwy — dbg A dwo] + Y _ Bid[dA A dBi]AX = 0.
i=1

(A.2)
Solving the first four equations of (A.1) féfA;, 8:Bj, j =1, ..., s, we nextimplement
an r-stage Runge—Kutta discretization in time
r r
Ai,m = aiO + At ZémnatAi,nv Bi,m - bio + At Zémnat Bi,n’
n=1 n=1 (A.3)

r r
al =a’+ At bndAm bl =b+ At bndBim,

n=1 n=1

with the corresponding conservation property

r
[dai A dbf — da® A db?] — > bn[8dA m A dBim + A m A BdBmlAt = 0. (A4)

m=1

Combining (A.1) and (A.3), the discretized multisymplectic conservation law is give
by

S r
> bi[dal A db — da’ A doP] Ax + ) b[dal’ A dv — daf’ A duf’
i=1 m=1

+db A dw — db! A dw] At =0, (A.5)

which is a discretization of (15) integrated over the domaimy&] x [0, At]. This estab-
lishes that the concatenated G-L integrator is multisymplectic.
To examine a global property such as symplecticity, sum ovek thttice points:

M S ro.
> (Z bi [dal, A db'y — da’y A do? JAX + > b [dafl; A dvf, — da A duy’

k=1 i=1 m=1

+ o, A dwf, — do” A duw"] At) =0. (A.6)
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Expanding the outer sum and noting that for periodic boundary condiins = af" and
vp41 = vy, we find

[~]=
ou

m [dalinﬂ A duly — dag’ A dvm At

k=1 m=1
r
=) bn[daf,, Advl,, —dal A dv]']At = 0. (A7)
m=1
Similarly,
M T o
> bin[dbfy A dwyly — di’ A dwf] At = 0.
k=1 m=1
Therefore,
M S B M S
> bijdal Adbly] =)D bi[dal, Adb?,]. (A.8)
k=1 i=1 k=1 i=1

This is conservation of symplecticity in time with respect to the state variabtega i}
andb = {b; x} and the wedge produda A Bdb, whereB is a diagonal matrix with entries
{bi}.

APPENDIX 2. FORMULAE FOR THE NONCANONICAL SYMPLECTIC INTEGRATOR

SubstitutingQ = g + Aq allows the derivatives oH and R, to be expanded in power
series irt with all coefficients evaluated a®(q) the same way it was done fgy, in the text.

*1 9\ aH
—(P Q= Zk, (Aqﬁ> o, PO

y 1 (m)k - exp<Aq3)

prd k! aq aq
isthe shift operatay — q + Agthatgeneratesits Taylor expansion for any smooth functiol
of q. Here

where formally

Z Qi an

j=1

so that
9\ oH 9<+1H
AQ— ) — = ———AQj,... A
< qaq) aPn(p’Q) Z L OPndqj, ... 90, %z J

ak+1H
= Zz FEXTTRT (Z QSJl) <Z Qsjk>

s=1
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With this notation we obtain

e L OPndaj; ... 30, IR NRT

k=0 jl ----- J li,....Is>0

> li=k
> ilies

Hs by

" (Q_J)'
sl

(A.9)

Likewise,

S 5 J1
kX;, zjk: 1aqnaqJ1 aqJk | Z I10. 1! 1!

t
s=0 iaeees 1s>0
Zli:k
>ili=s
HS'Qn
(A.10)
and
Ra(Ph, Qn) it”‘iakR”(P W Y (Ql’n)ll <Qm’n>lk
ns n) = ns Un s
o S aQK LT LI 1! s!
Zh:m
> ili=k
Rn.n
(A.11)
In the case of the AL systeR,(P,, Qn) = %(1 + h?P,Q,) so that
1+ h2Pygn =, 1
Ra(Pn, Qn) = f‘i‘zt than.n- (A.12)
—_———— s=1 L/_/
R},n RS.H

APPENDIX 3. PROOF OF PROPOSITION 2

ProOPOSITIONA.2. Consider the Taylor series expansions for the generating function
of the phase flow of the syst€&Y) and its r-th order truncatiorG

[ee) tm . r tm
G =) —GnP. . GO=) _—GnP. q.
m= 0 m=0

Upon substitution into the transformation equati¢b$) two systems are obtained

aG aG
T%(Pv q) = fn(pn’ qn)a aipn(Pv q) = gn(Pn’ Qn) (A13)
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and
3G - 3G -~ A
a_qn(Pv q) = fn(pns qn), a—l’i‘)n(Pv q) = gn(Pns Qn)v (A14)

with respective solution®, Q) and(P, Q). Then (A.13)and(A.14)can be solved uniquely
for sufficiently small t so that

(P, Q) = (P, Q) +0O1*). (A.15)

Proof. Observe thaG(t) = G(t) + Ot" 1) and therefore
G ~

fa(Pn, Gn) = —(P, @) + O™
90

) A G = r+1

On(Pn, Qn) = 87P(P’ Q)+ Ot ™). (A.16)
n
From the second equation of (A.13) we calculate the derivative matrix

32G 3G N 9g, 90Q;
Jl(t):apa :< >: 3 9 9Qj |
q 0 PndQm 8Qj 90m

=1

Using the expansio® = q + O(t) to calculate% and setting = 0 yields

N

d d
Fn@ =3~ g”, (P, Qbym = %(p, &) = Smneon(Pn, Qo).
j=1 7 "

Sincew is nondegenerate ap,(q) by assumptionJ(t) is nonsingular fot = 0 and for
sufficiently small nonzerb the same holds by continuity. Sin@&t) = G(t) + O™+,

51 392G
~ 9Paq

is nonsingular for small as well. Taking the smaller of the two values towe ensure
that the first equtions of both systems (A.13) and (A.14) are solvable.f@incidentally,
this argument establishes thatandG obtained by the technique in Section 4 are indeec
generating functions of the second kind.) Next, we substitute the obtBinadP into the
second equations of (A.13) and (A.14) and solvedandQ, respectively. This is possible
since the appropriate Jacobi matrix is

0
Pt = ( (P, Q)) = Gmnen(Pa. Qn).
9Qm
and it is nondenerate for the chosen valuesiof construction.
Having obtained, Q) and P, Q) we compare their Taylor expansionstat 0. For
that we differentiate equations (A.13) and (A.14) with respecttttok-th order and solve
for

dk dc -
ﬁ(Pa Q)'t:O and w(P’ Q)|t=0’
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respectively. By virtue of (A.15), upon setting= O the differentiated equations reduce to
the same system as longlas r, and by nondegeneracy #f(0) andJ?(0) the solution is
unique so that

dk dk - .
w(P’ Q)|t:0=w(Pa Q)'t:()a k=05'~-ar
and therefore

P, Q =P, Q+01"h

for all t as determined above.
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